Enabling Decentralised Machine Learning on RISC-

Gianluca Mittone, Robert Birke, Iacopo Colonnelli, Marco Aldinucci Università degli Studi di Torino, Dipartimento di Informatica & CINI HPC Key Tecnologies and Tools lab

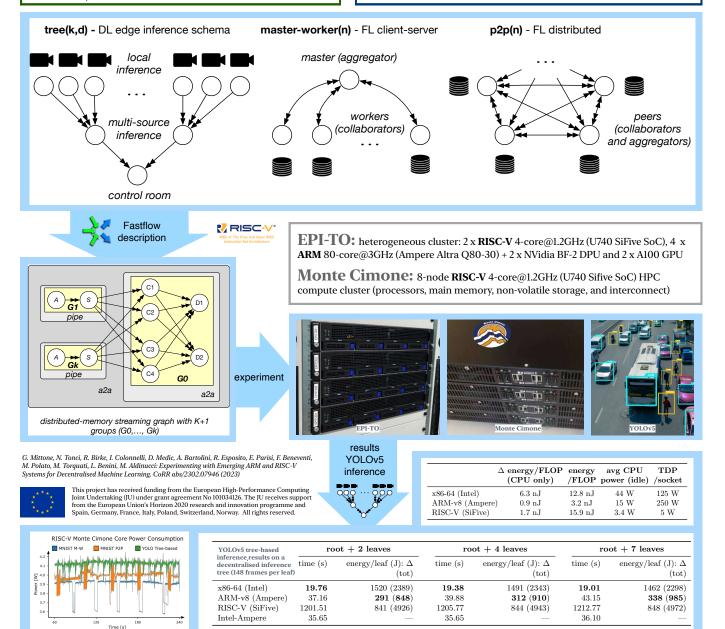
EuroHPC

Motivations

While tools for Decentralized ML are starting to flourish, many are not flexible and portable enough to experiment with novel systems (e.g., RISC-V), non-fully connected topologies, and asynchronous collaboration schemes. We present a methodology based on the FastFlow parallel programming library, capable of overcoming all these limitations and generating different working DML schemes on two emerging architectures (ARM-v8, RISC-V) and Intel.

Results

We propose a lightweight middleware for experimenting with FL at the edge. The proposed middleware comprises a run-time (FastFlow C++ header-only library) supporting the pattern-based generation of distributed streaming networks and a methodology to bring ML solutions often developed in Python to a C++ distributed system.


Porting modern FL software on RISC-V

PyTorch (https://gitlab.di.unito.it/alpha/riscv/torch) Some of the PyTorch dependencies are still not compatible with the RISC-V ecosystem. Some of them are mandatory to complete the compilation process (breakpad, SLEEF). Others do not break the compilation process but affect some PyTorch core functionalities (<u>cpuinfo</u>). Others are compatible but not yet optimized.

OpenFL (https://github.com/alpha-unito/OpenFL-extended) OpenFL is an open-source FL framework developed by Intel. Despite officially not supporting RISC-V, we successfully made it work by recompiling ad hoc several Python packages (grpcio, scipy) and the OpenBLAS library.

FastFlow (https://github.com/fastflow)

FastFlow, being a vanilla C++20 header-only library, makes it possible to easily experiment with any distributed system having a working C++20 compiler, such as those based on Intel, ARM, or the emerging RISC-V architectures.

